

Le vent, un signal environnemental majeur pour la croissance végétale (de l'aléa à l'adaptation)

Mair Photographie, mair.ch

séance publique de l'Académie d'Agriculture organisée par B Moulia (section 5) et Meriem Fournier (section 2)

En Agriculture et Foresterie

Les effets mécaniques du vent = un (terrible) aléa !

, la verse des céréales => Dans le monde pertes environ 10% ! (Cymmit)

risque de perte de rendement ++ dizaines de quintaux par hectare (Arvalis-Cetiom Infos, 2014) et surtout: variabilité du rendement

En forêts de production

- 20km/h
 e)

 20km/h
 e)
 - dernière décennie = 2
 tempêtes centennales et 8
 décennales : 50% pertes en volumes , bilan C0₂
 - 1 er aléa de la forêt française Désorganisation de la filière

Et globalement, çà risque bien de ne pas s'arranger ...

1- Changement climatique

France / Europe

Période de vegetation: Orages plus puissants et plus précoces (juin)

Tempêtes cycloniques hivernales : pas de conscensus (à la difference de l'Amérique du Nord) (depend du déplacement du rail des tempête sur l'Atlantique)

Vents flash (rafales descendante, ex Corse 2023 224 km/h) devrait augmenter (surtout du printemps à,l'automne, mais possible toute l'année ex Toulouse)

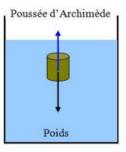
Zone méditerranénnes Médicanes plus puissants

Zone tropicales Cyclones plus puissants, trajectoires différentes

2-Limitation de nos outils de "contrôle"

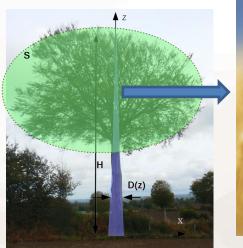
En céréales à paille au bout de l'usage de raccourcisseurs génétiques et chimiques

- En forêts de production
 - contraintes multiples sur le choix des essences
 - incertitudes sur la structure des peuplements (moindre densité) et sur l'effet de l'éclaircie (qui semble augmenter la casse au vent pendant environ 5 ans)



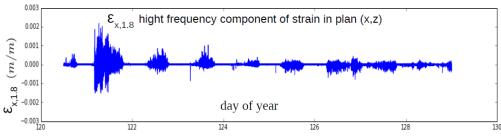
Mais les plantes terrestres ont du braver les vents tout au long de leur Evolution!

- Autres periodes très ventées, par exemple au Dévonien et au Crétacé
- colonisation de la terre ferme et de la dimension verticale
- => changement drastique d'exposition aux effets mécaniques



⇒ Une tige rigide

(pour porter la masse des feuilles et fruits / gravité) => fournit un bras de levier au vent

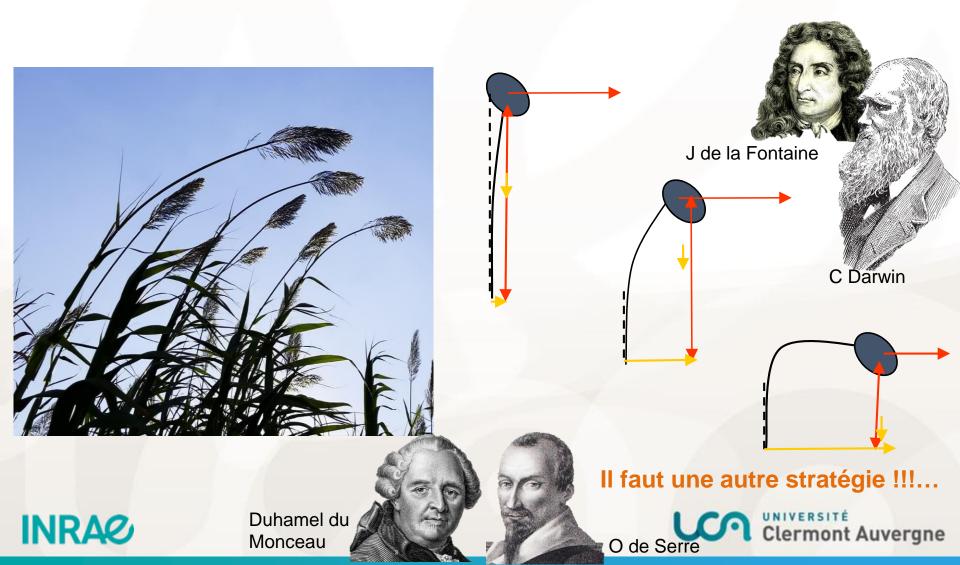


Amplification mécanique


⇒ face au vent très turbulent et donc fluctuant,

une tige rigide + masses portées => Risque de résonance

2eme Amplification mécanique


Énorme pression de sélection

Première stratégie retenue par la selection naturelle

La stratégie du Roseau... et ses limites

Exposition au vent varie énormément au cours de la vie d'une plante

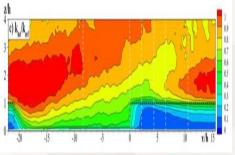
Dans la nature

topographie

Stature

Voisinage amont

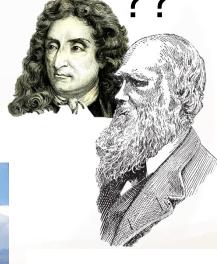
Dans l'(agri)culture


Structure du paysage (coupes)

haies

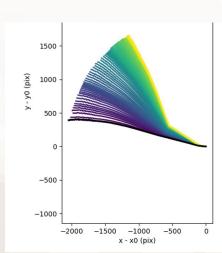
Hauteur et hétérogénéité du couvert

Donc ce n'était pas gagné! Mais ...



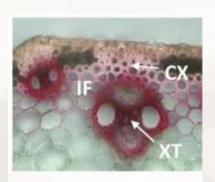
Mais heureusement : sélection très forte d'une stratégie de résistance au vent par acclimatation (plasticité développementale)

Le chêne (et le hêtre) avisés!

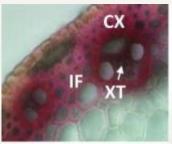

Stratégie d'adaptation en 2 rideaux

Résilience aux accidents

Leçon de choses (phénoménologie)


1- Herbacées

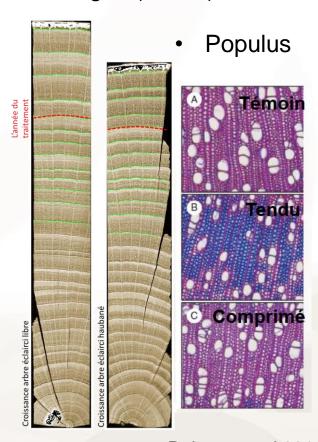
dicotylédones : ex la luzerne



monocotylédones : ex Brachipodium)



Leçon de choses (phénoménologie)


2- Ligneuses

• Prunus (jeune)

Fagus (adulte)

Dogmo et al 2022

Roignan et al 2018 Niez et al 2018

Thigmomorphogenèse

Syndrôme de réponses morphogénétiques coordonnées à l'exposition au vent

- Croissance aérienne longitudinale
- + Croissance aérienne radiale
- Floraison
- + Développement racinaire
- + Modification des propriétés mécaniques (differenciation du bois, modifications pariétales, module de Young)

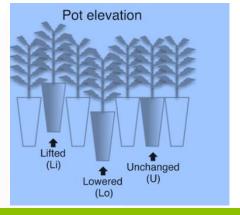
Acclimatation (plasticité adaptative)

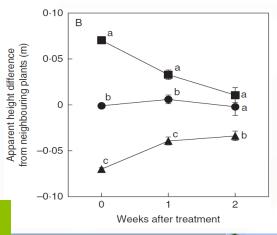
⇒ Réduire sa prise au vent et ses bras de levier (sans fléchir comme un roseau).

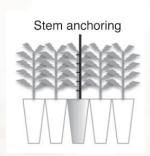
⇒ Ou, si possible, se serrer les branches et se mettre à couvert en regroupant

⇒ Augmenter ses resistances

- à la casse des tiges (verse caulinaire, volis)

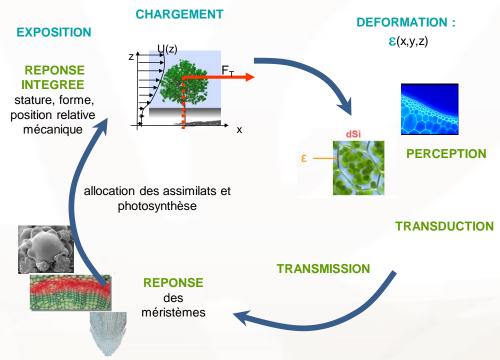

 au déracinement (verse racinaire, chablis)


De manière équilibrée


⇒ Se mettre à couvert

Nagashima *et al* 2011, 2012

Croissance d'un front lisse

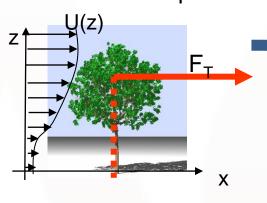


.... Protection collective vis à vis du vent

Cycle Thigmomorphogénétique

Acclimatation (plasticité adaptative)

CHARGEMENT Le vent sollicite


En fonction de son

EXPOSITION

REPONSE INTEGREE

stature, forme, position relative mécanique

Le vent sollicite l'ensemble de la structure plante:

DEFORMATION:

Distribue la deformation $\mathcal{E}(x,y,z)$ au sein des tissus hétérogènes

PERCEPTION par les soules

par les seules cellules vivantes

TRANSDUCTION

Activation de genes

Conséquences sur l'allocation des assimilats et même sur la photosynthèse

REPONSE des méristèmes : croissance et differentiation,

force de puit

TRANSMISSION:
signaux secondaires
systémiques

Signaux morphogénétiques environnementaux

Dépasser le cadre conceptuel qui prévalait :

- Effets environnementaux via la production de biomasse, son allocation, et sa reduction par les stress
- Effet vent sur échange gazeux (transpiration et (un peu) photosythèse
- Tenue mécanique: déterminée par la génétique (tissus de soutien) et soumise à l'aléa (tempête)

Signaux environnementaux

- Interaction physico-chimique environnement -structure
- Perception
- Réponse (mobilisant l'energie issue du métabolisme)

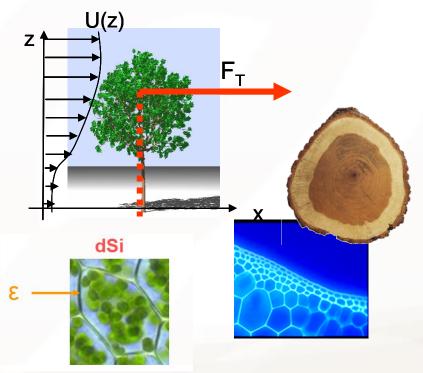
Anticipation (essentiel à la vie fixée)

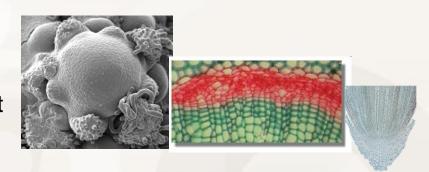
⇒ la réponse d'acclimatation au vent des plantes (thigmomorphogénèse) éepend de 4 Structures

• Structure aréodynamique (interactions mécaniques vent-couvert-plantes)

Mécanique des fluides et des solides, biomécanique

• Structure mécanique (tenir la charge, distribuer les déformation)

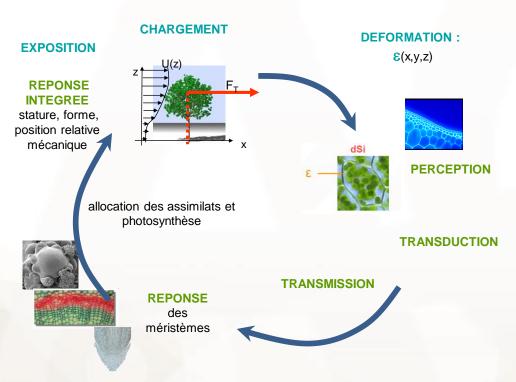

\$\(\begin{aligned}
\begin{aligned}
\begin{alig


Structure perception: senseurs

♥ Mécanobiologie

 Structure méristématique : réponses (croissance et différentiation)

☼ Biologie (de la plasticité) du développement



interdisciplinarité

Cycle Thigmomorphogénétique

QUESTIONS SUPPL

resistance est adaptée alors qu'on ne connait pas les tempêtes ?

comment ne pas sur-réagir aux vents répétés mais sans danger ?

Accommodation ?

quelles sont les limites de cette acclimatation adaptative ?
Différences de strategies entre espèces ?

Acclimatation (plasticité adaptative)

quels usages agricoles, horticoles et forestiers?

Application dans un contexte de transition ecologique

La recherche française a été à la pointe de cette recherche

Malgré des investissements (humains et matériels) .. limités

Grâce à nos structures de recherches permettant l'interdisciplinarité au long cours

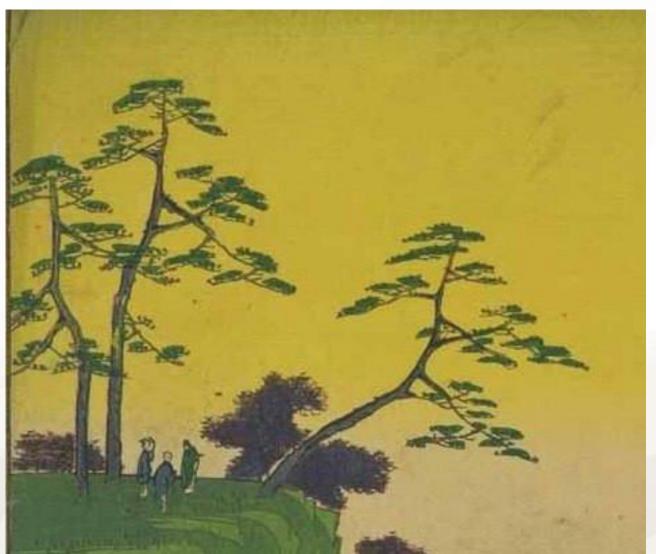
Et des applications sont en routes dans différents secteurs

C'est ce que vont vous présenter nos intervenantes et intervenants

Sylvain Dupont est Directeur de Recherches à l'INRAE au sein de l'UMR ISPA à Bordeaux. Son travail porte sur la modélisation numérique de l'écoulement du vent sur les paysages et sur les couverts végétaux

Jana Dlouhá est Chargée de Recherches à l'INRAE au sein de l'UMR SILVA à Nancy. Son travail porte sur la biomécanique des arbres forestiers, en lien avec l'écologie forestière

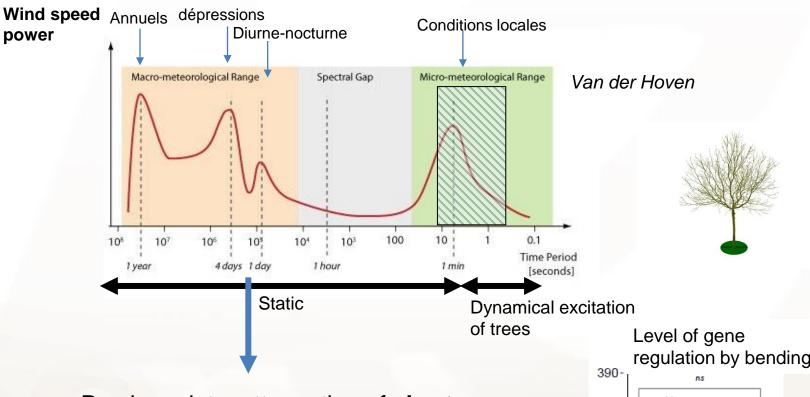
Nathalie Leblanc-Fournier est Maitresse de Conférences à l'Université Clermont-Auvergne, au sein de l'UMR PIAF à Clermont-Ferrand. Son travail porte sur les mécanismes moléculaires de réponses des plantes aux stimulations mécaniques externes, comme le vent.



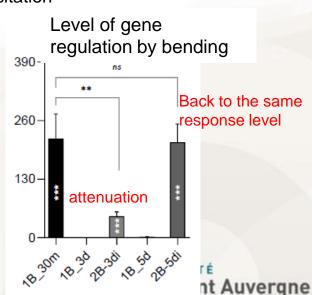
\$continous process of balance along development

Hiroshige Utagawa, 1856 "View of Konodai and the Tone River" in the UNIVERSEPLES of 100 Clernviews of Edgne

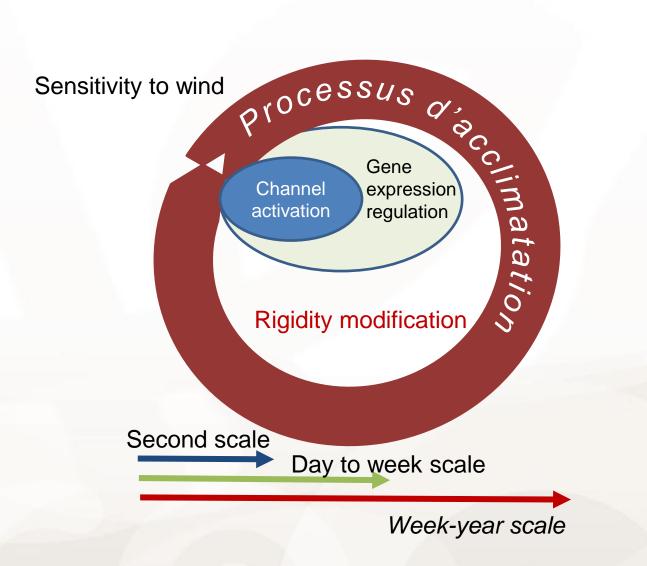
CHARGEMENT DEFORMATION: EXPOSITION €(x,y,z) **REPONSE INTEGREE** stature, forme, position relative mécanique dSi **PERCEPTION** allocation des assimilats et photosynthèse **TRANSDUCTION TRANSMISSION REPONSE** des méristèmes Clermont Auvergne INRAE


En serre

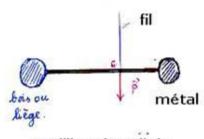
Part II: The fluctuating nature of mechanical wind loads

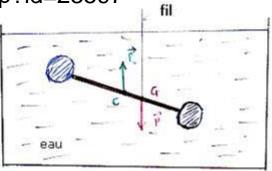


 Previous data: attenuation of shortterm responses (one day to one week)


What effect on long-term responses ?

What about mechanisms involved?


Conclusion



http://mediatheque.accesmad.org/educma d/mod/page/view.php?id=23597

Equilibre dans l'air

Equilibre dans l'eau

