



## Etude fondamentale et exploitation du microbiote du sol par l'approche metagénomique.

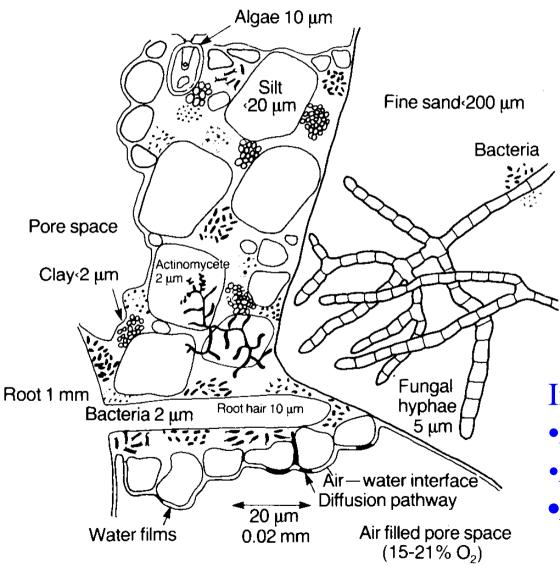
**Pascal SIMONET** 



#### **Environmental Microbial Genomics Group**

Laboratoire Ampère . UMR CNRS 5005 Ecole Centrale de Lyon . Université de Lyon



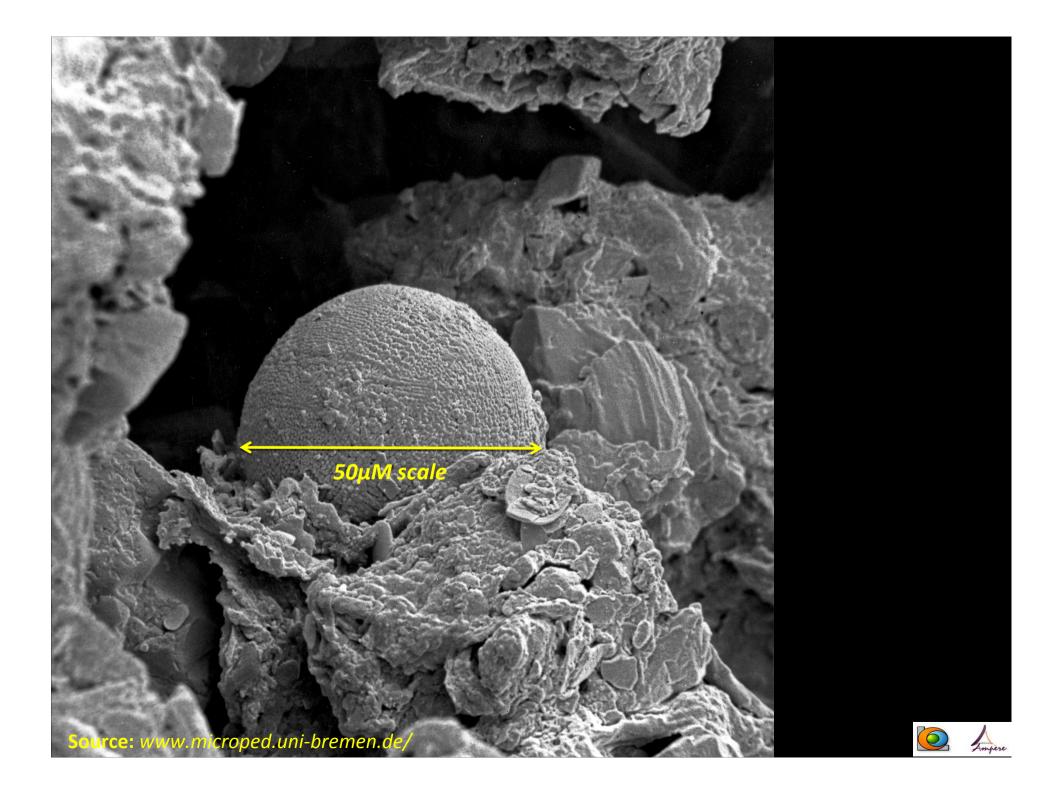

Launch of the Global Soil Biodiversity Atlas in France, 28<sup>th</sup> November 2016

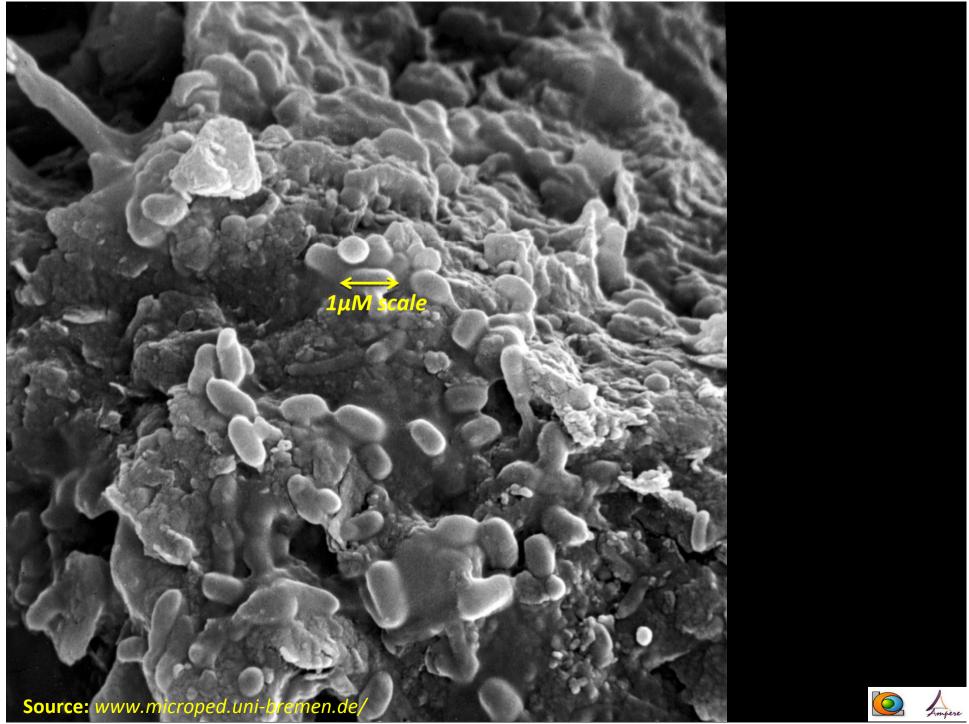
# SOIL



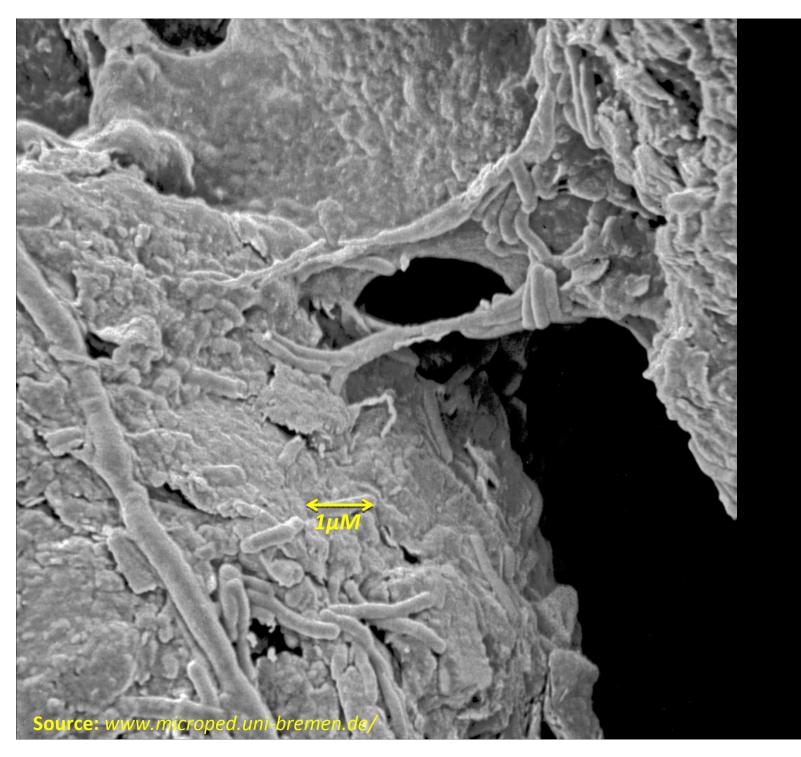


## Soil, a Composite of Communities



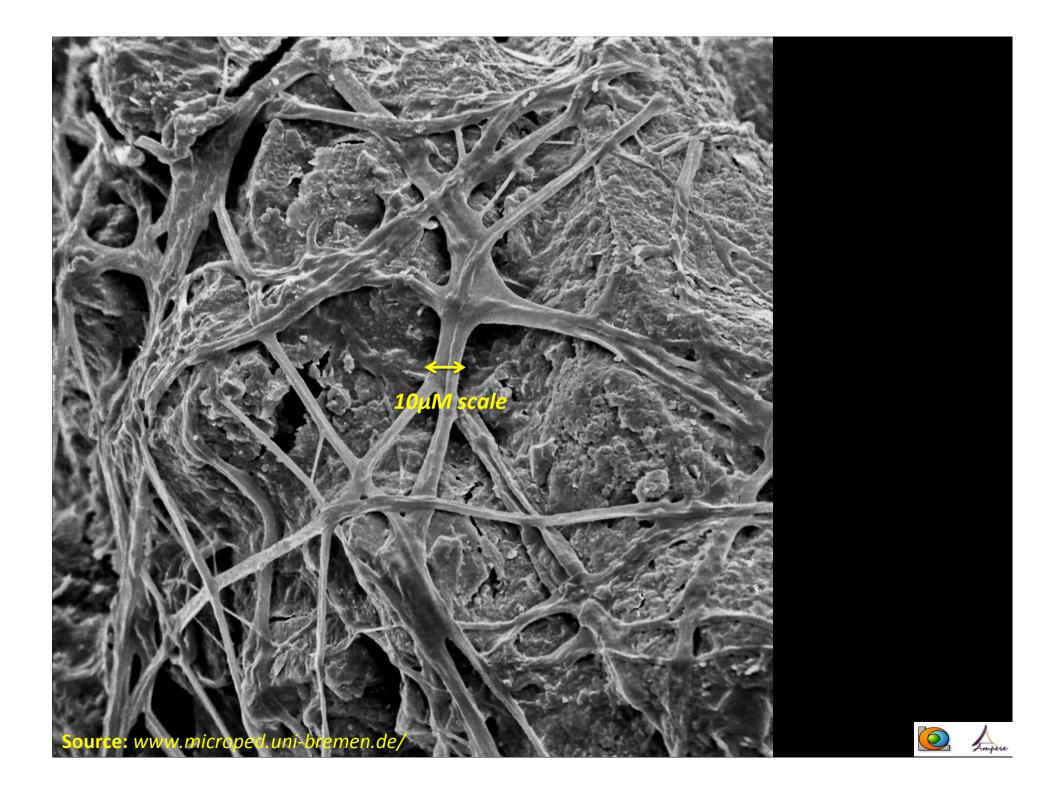


Its very diverse Complex gradients Unmixed

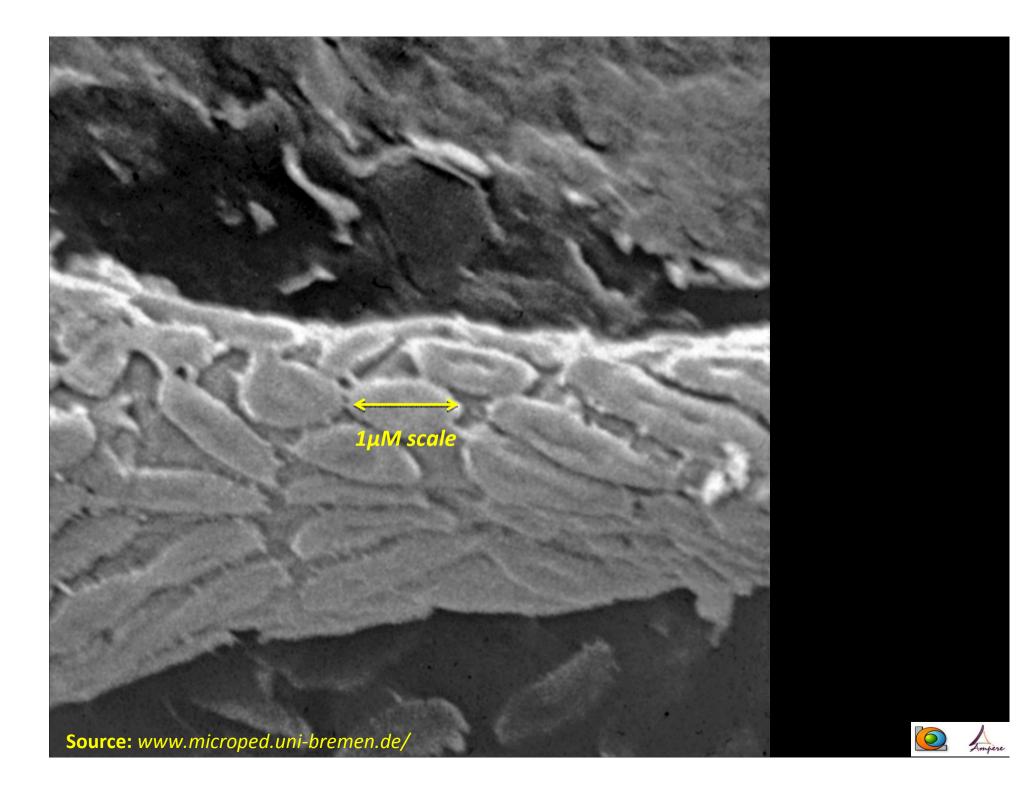
- microaggregates
- rhizosphere
- fungalsphere
- fauna
- pore surfaces
- OM coatings


#### **Implications:**

- •Spatial isolation
- *Minimizes competitionHow to sample since* 
  - multiple communities?








10µM scale





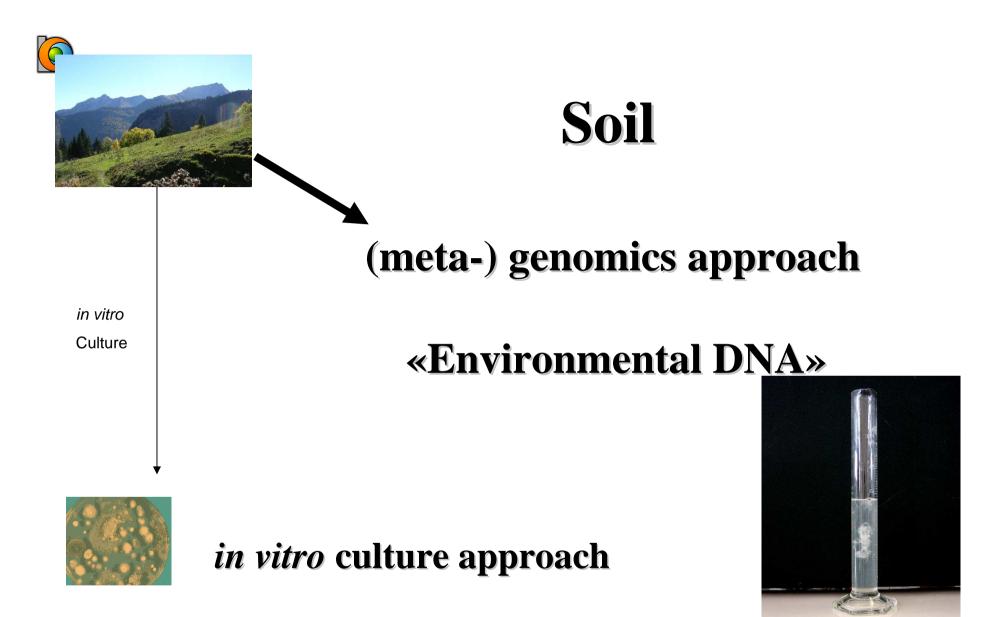






### 1 g of soil

#### Number of bacterial cells :


#### $1\ 000\ 000\ 000$

# Number of bacterial species: 10 000

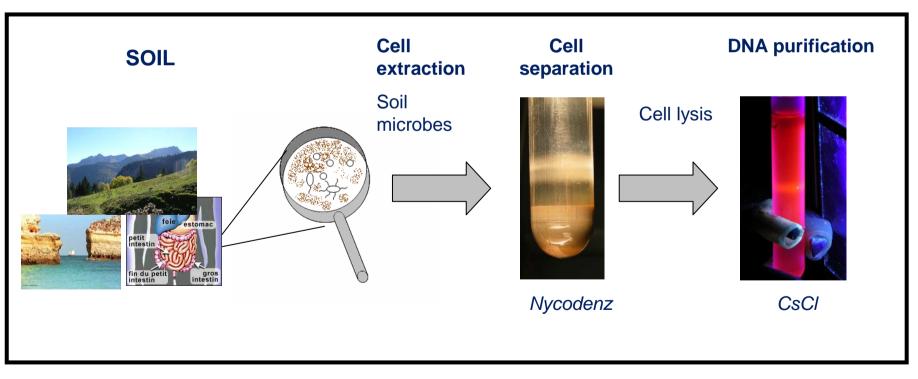
Torsvik 2002 (Science) Roesch 2007 (ISME J.)

>10 000 000

Gans 2005 (Science)



**Cultivable bacteria? From 0,1 to 1%** 

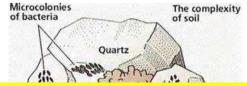

P.C.



### **Metagenome DNA extraction**

•In situ lysis and total DNA extraction

•Cell extraction and lysis






## Who is Where doing What?

## FUNDAMENTAL QUESTIONS:





particle

## with Whom and Why? And When?






## Bacterial diversity: Huge reservoir of genetic resources

### **APPLICATIONS:**





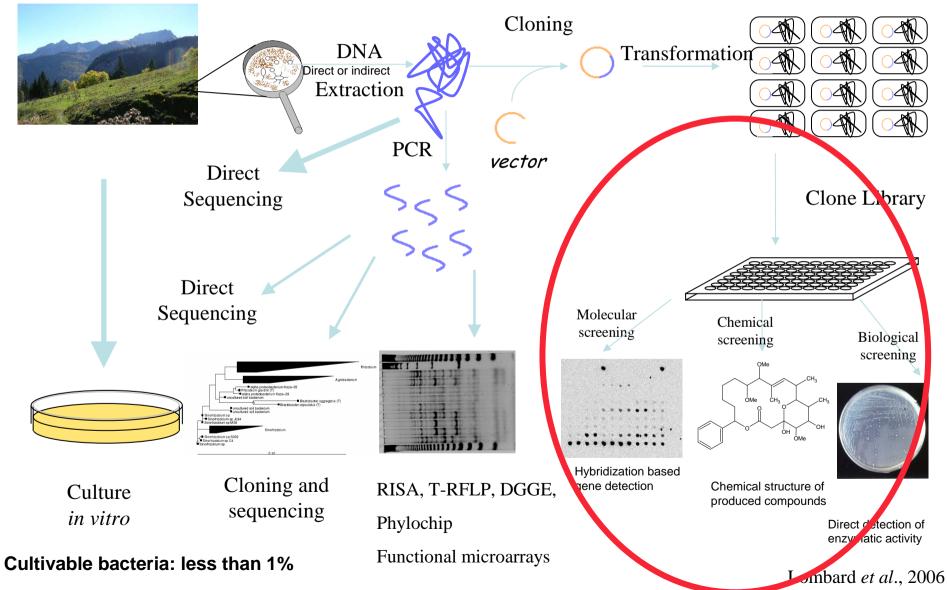
## **Enzymes, chemical compounds...**





## **APPLICATIONS**

## It does not matter what you miss... Exploit what you get.


Julian Davies, oral talk, many years ago

## FUNDAMENTAL

Links taxonomy/functions Ecosystem functioning It does matter what you miss... Exploit what you get?







Domesticated bacterial host

## FUNDAMENTAL

Links taxonomy/functions Ecosystem functioning
It does matter what you miss...

Metagenomics: Identification of a « rare biosphere ».



Conditionally Rare Taxa (CRT) Disproportionately Contribute to Temporal Changes in Microbial Diversity . Ashley Shade, Stuart E. Jones, J. Gregory Caporaso, et al.

mBio 5(4): . 2014. doi:10.1128/mBio.01371-14.

"We discovered that CRT made up 1.5 to 28% of the community membership, represented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity (i.e., up to 97% of Bray-Curtis dissimilarity)".

## Role of the rare biosphere ?

•Genes can be strongly expressed (numerous examples in the literature)

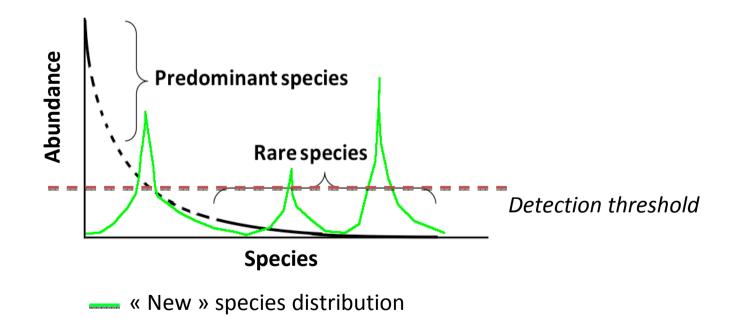
•Rare taxa can become dominant when environmental conditions change

Rare taxa are a reservoir of transferable genetic information

- Rare taxa ?
- Inaccessible bacteria, unavailable DNA ? 👝 🚣

### Extent of the soil bacterial diversity?

### How to get it?


•Genes can be strongly expressed (numerous examples in the literature)

•Rare (or unavailable) taxa can become dominant (or accessible) when environmental conditions change

•Rare taxa are a reservoir of transferable genetic information

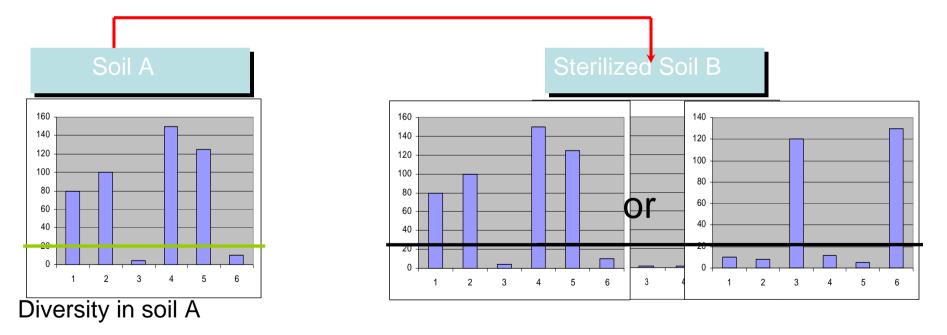


Evenness modification : rare taxa become detectable.








#### Conceptual approach:



Aurélie Faugier

Provide new developing conditions to soil bacterial communities

Bacterial community extracted from soil A





1. Extraction of the 9 bacterial communities

Nycodenz density gradient



- 2. Inoculation of each bacterial community into the nine sterilized soils
- 3. Incubation at RT for 1 day, 2 months, 6 months

4. Monitoring of bacterial community structure evolution (direct DNA extraction, PCR and phylochip)



**Two questions:** 

•Are new developing community structures different from the donor ones and from these of the recipient soils?

•Are new taxa detected?



## Are new taxa detected?

> A bacterial community inoculated into new (sterilized) soils reveals bacteria genera undetected in the original inoculum

>Each inoculated community: Extent of the diversity increases when considering the different recipient soils.

Genera detected in CS and not later Genera detected at T0, T1, T2 and not in CS Genera detected only at T1



## Are new taxa detected?

A bacterial community inoculated into new (sterilized) soils reveals bacteria genera undetected in the original inoculum

Each inoculated community: Extent of the diversity increases when considering
the different recipient soils

the different incubation times

the different extraction techniques...

#### the different DNA analysis methods...

Delmont TO et al., 2014. Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol. Fertil. Soils 50: 1069-1076.

#### **METAGENOMICS**

- Inventory of bacteria
- Inventory of genes

•Genomics: the exhaustive study of genomes, more precisely of all genes, their location on chromosomes (or plasmids), their sequence, function, role.

•Metagenomics transcends the individual organism to the « *meta* » level.

... to understand soil microbial community diversity and function

The first but necessary step for unveiling cryptic microbial partnerships in nature, the interactions at various levels.



### Reconstructing Genomes from the Soil Metagenome



Tom O Delmont, Laurie Maccario, Emmanuel Prestat, Eric Pelletier, Denis LePaslier, Pascal Simonet and Timothy M Vogel

**Environmental Microbial Genomics Group** Laboratoire Ampère . Ecole Centrale de Lyon . Université de Lyon



### **Metagenomic assembly**





#### **Major difficulties:**

- -Balanced evenness
- -Genomic similarity
- -Length of generated sequences
- -Computational limits

#### Solutions:

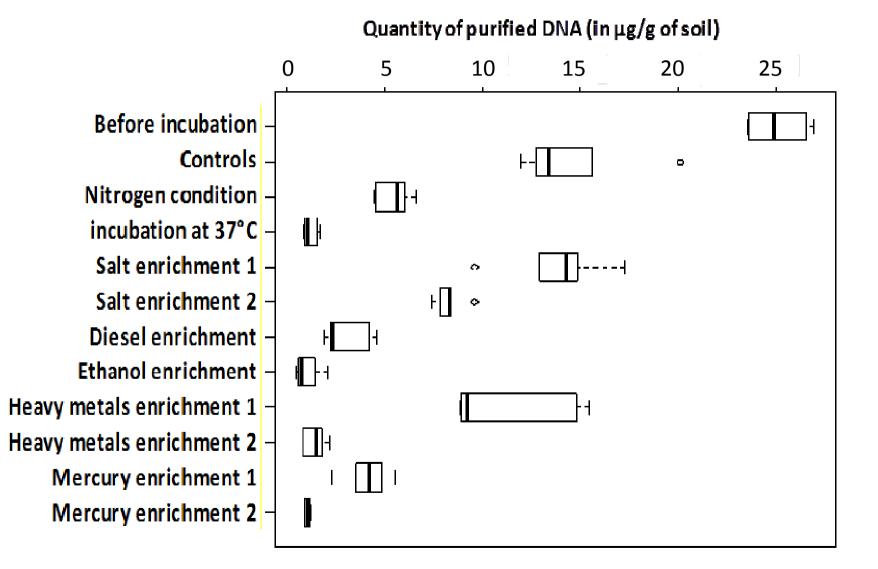
-Deeper sequencing efforts
-Improved assembly software
-Waiting for novel sequencing technologies
-Playing with other environments ...

## **Experimental design**



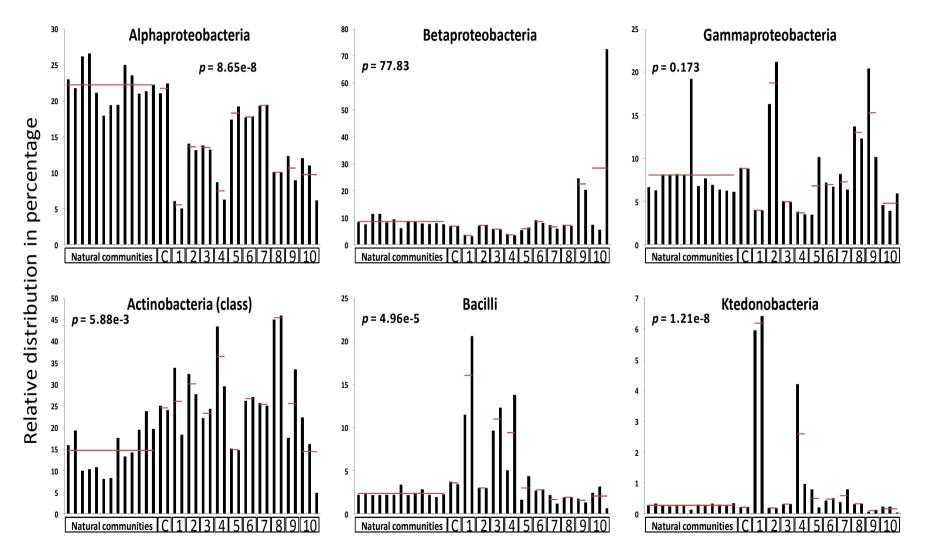
Pilot study: various environmental variations (diff. concentrations):

Heavy metalsMercuryDieselEthanolNo oxygen (only Nitrogen)SaltTemperature (37°C)


Four month of incubation in biological replicates



Selected conditions sequenced in duplicates (Titanium pyrosequencing) In triplicate for one condition (mercury enrichment)


## **Population density estimation**





## **Taxonomical composition**





M5NR databases (E-value cut-off 10<sup>-5</sup>)

## **Reconstructed genetic structures**

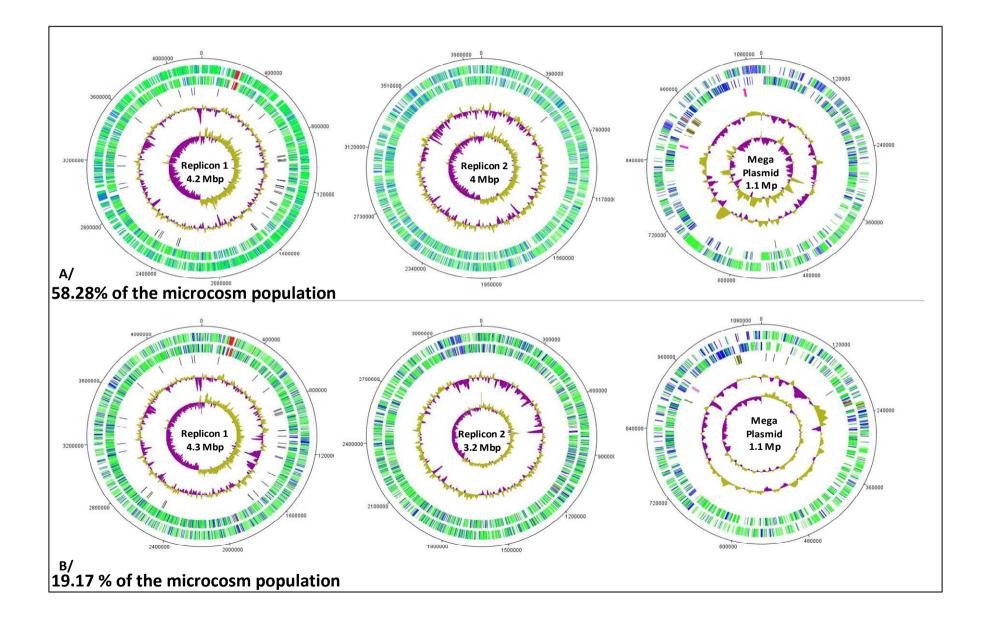


| Condition                           | Assembled genetic structure                  | Related genus<br>based on 16S rRNA |  |  |
|-------------------------------------|----------------------------------------------|------------------------------------|--|--|
| Heavy metals                        | Bacterial chromosome                         | Leifsonia                          |  |  |
| 8g / kg                             | Bacterial chromosome                         | Rhodanobacter                      |  |  |
| Microcosm 1                         | Plasmid IncP carrying metal resistance genes | Undefined                          |  |  |
| Heavy metals                        | Bacterial chromosome                         | Leifsonia                          |  |  |
| 8g / kg                             | Bacterial chromosome                         | Rhodanobacter                      |  |  |
| Microcosm 2                         | Plasmid IncP carrying metal resistance genes | Undefined                          |  |  |
| Ethanol 20%                         | Bacterial chromosome                         | Sporolactobacillus                 |  |  |
| Microcosm 1                         | Bacterial chromosome                         | Ktedonobacter                      |  |  |
| Ethanol 20%<br>Microcosm 2          | Bacterial chromosome                         | Sporolactobacillus                 |  |  |
|                                     | Bacterial chromosome                         | Acidobacteria Gp1                  |  |  |
|                                     | Bacterial chromosome                         | Rhodanobacter                      |  |  |
| Mercury                             | Bacterial chromosomes                        | Rhodanobacter                      |  |  |
| 0.02g / kg<br>Microcosm 1           | Bacterial chromosome                         | Streptomyces                       |  |  |
| WICFOCOSITI I                       | Undefined structure carrying one Mer operor  | Streptomyces                       |  |  |
|                                     | Probable phage infection                     | Streptomyces                       |  |  |
|                                     | Bacterial chromosome                         | Acidobacteria Gp1                  |  |  |
|                                     | Bacterial chromosome                         | Dyella                             |  |  |
| Mercury                             | Bacterial chromosome                         | Streptomyces                       |  |  |
| 0.02g / kg                          | Bacterial chromosome                         | Streptomyces                       |  |  |
| Microcosm 2                         | Undefined structure carrying one Mer operor  | Streptomyces                       |  |  |
|                                     | Probable phage infection                     | Streptomyces                       |  |  |
|                                     | Probable phage infection                     | Streptomyces                       |  |  |
|                                     | Bacterial chromosome (replicon 1)            |                                    |  |  |
| Mercury<br>0.2g / kg<br>Microcosm 3 | Bacterial chromosome (replicon 2)            | Burkholderia                       |  |  |
|                                     | Mega-plasmid incF carrying two Mer operons   |                                    |  |  |
|                                     | Bacterial chromosome (replicon 1)            |                                    |  |  |
|                                     | Bacterial chromosome (replicon 2)            | Burkholderia                       |  |  |
|                                     | Mega-plasmid incF carrying one Mer operon    |                                    |  |  |

## **Reconstructed genetic structures**

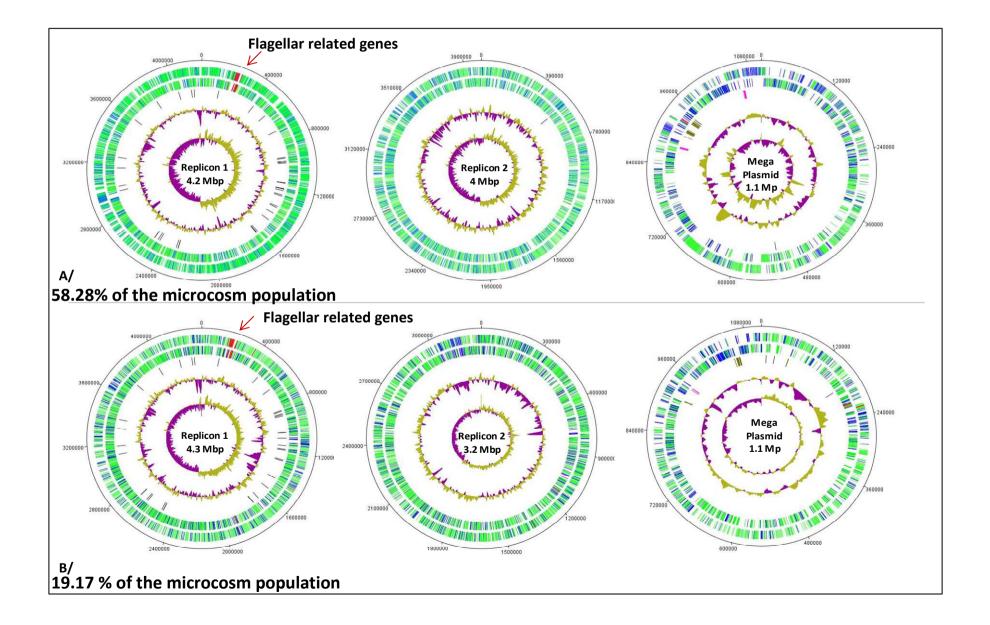


| Condition                           | Assembled genetic structure                  | Related genus<br>based on 16S rRNA | Microcosm<br>relative<br>proportion | Natural<br>relative<br>proportion |
|-------------------------------------|----------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|
| Heavy metals                        | Bacterial chromosome                         | Leifsonia                          | 7.77%                               | 5.55E-04%                         |
| 8g / kg                             | Bacterial chromosome                         | Rhodanobacter                      | 17.70%                              | 1.17E-04%                         |
| Microcosm 1                         | Plasmid IncP carrying metal resistance genes | Undefined                          | 0.52%                               | < 1.E-04                          |
| Heavy metals                        | Bacterial chromosome                         | Leifsonia                          | 9.27%                               | 7.58E-04%                         |
| 8g / kg                             | Bacterial chromosome                         | Rhodanobacter                      | 11.22%                              | 2.03E-04%                         |
|                                     | Plasmid IncP carrying metal resistance genes | Undefined                          | 0.47%                               | < 1.E-04                          |
| Ethanol 20%                         | Bacterial chromosome                         | Sporolactobacillus                 | 7.04%                               | < 1.E-04                          |
| Microcosm 1                         | Bacterial chromosome                         | Ktedonobacter                      | 16.51%                              | < 1.E-04                          |
| Ethanol 20%<br>Microcosm 2          | Bacterial chromosome                         | Sporolactobacillus                 | 15.49%                              | < 1.E-04                          |
|                                     | Bacterial chromosome                         | Acidobacteria Gp1                  | 4.52%                               | 2.42E-04%                         |
|                                     | Bacterial chromosome                         | Rhodanobacter                      | 14.03%                              | 1.92E-03%                         |
| Mercury                             | Bacterial chromosomes                        | Rhodanobacter                      | 5.40%                               | 7.89E-04%                         |
| 0.02g / kg<br>Microcosm 1           | Bacterial chromosome                         | Streptomyces                       | 9.30%                               | 1.75E-03%                         |
| IVIICFOCOSM 1                       | Undefined structure carrying one Mer operor  | Streptomyces                       | 0.57%                               | < 1.E-04                          |
|                                     | Probable phage infection                     | Streptomyces                       | 1.33%                               | < 1.E-04                          |
|                                     | Bacterial chromosome                         | Acidobacteria Gp1                  | 7.84%                               | 2.58E-04%                         |
|                                     | Bacterial chromosome                         | Dyella                             | 12.08%                              | 2.75E-03%                         |
| Mercury                             | Bacterial chromosome                         | Streptomyces                       | 8.73%                               | 2.43E-03%                         |
| 0.02g / kg                          | Bacterial chromosome                         | Streptomyces                       | 4.39%                               | 1.87E-02%                         |
| Microcosm 2                         | Undefined structure carrying one Mer operor  | Streptomyces                       | 0.96%                               | < 1.E-04                          |
|                                     | Probable phage infection                     | Streptomyces                       | 7.68%                               | < 1.E-04                          |
|                                     | Probable phage infection                     | Streptomyces                       | 0.73%                               | < 1.E-04                          |
|                                     | Bacterial chromosome (replicon 1)            |                                    | 26.32%                              | 1.99E-03%                         |
| Mercury<br>0.2g / kg<br>Microcosm 3 | Bacterial chromosome (replicon 2)            | Burkholderia                       | 25.06%                              | 5.63E-04%                         |
|                                     | Mega-plasmid incF carrying two Mer operons   |                                    | 6.90%                               | 2.34E-04%                         |
|                                     | Bacterial chromosome (replicon 1)            |                                    | 9.59%                               | 1.28E-02%                         |
|                                     | Bacterial chromosome (replicon 2)            | Burkholderia                       | 7.13%                               | 8.34E-03%                         |
|                                     | Mega-plasmid incF carrying one Mer operon    |                                    | 2.45%                               | 2.01E-03%                         |


## **Reconstructed genetic structures**

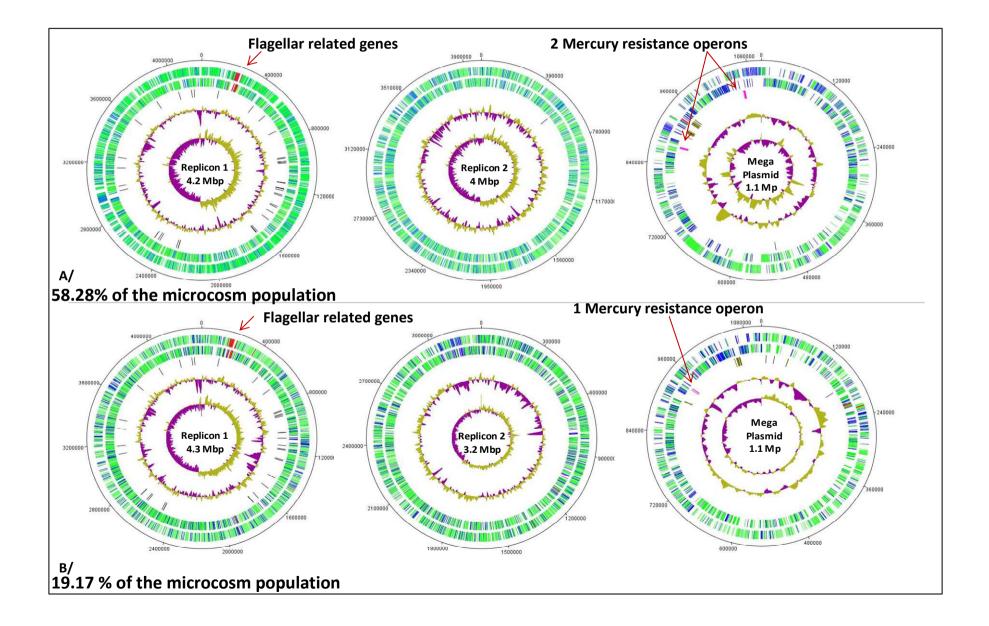


| Condition                              | Assembled genetic structure                  | Related genus<br>based on 16S rRNA | Microcosm<br>relative<br>proportion | Natural<br>relative<br>proportion | Number of<br>contigs or<br>scaffolds | Structure<br>coverage<br>in dataset | GC<br>content | Genetic<br>structure<br>size |
|----------------------------------------|----------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|---------------|------------------------------|
| Heavy metals<br>8g / kg<br>Microcosm 1 | Bacterial chromosome                         | Leifsonia                          | 7.77%                               | 5.55E-04%                         | 4 scaffolds                          | 30X                                 | 67.8%         | 3,8 Mbp                      |
|                                        | Bacterial chromosome                         | Rhodanobacter                      | 17.70%                              | 1.17E-04%                         | 3 scaffolds                          | 50X                                 | 68.0%         | 4,0 Mbp                      |
|                                        | Plasmid IncP carrying metal resistance genes | Undefined                          | 0.52%                               | < 1.E-04                          | 1 scaffold                           | 100X                                | 63.4%         | 0.073 Mbp                    |
| Heavy metals                           | Bacterial chromosome                         | Leifsonia                          | 9.27%                               | 7.58E-04%                         | 5 scaffolds                          | 30X                                 | 67.8%         | 3,7 Mbp                      |
| 8g / kg                                | Bacterial chromosome                         | Rhodanobacter                      | 11.22%                              | 2.03E-04%                         | 30 scaffolds                         | 40X                                 | 68.0%         | 4,0 Mbp                      |
|                                        | Plasmid IncP carrying metal resistance genes | Undefined                          | 0.47%                               | < 1.E-04                          | 1 scaffold                           | 100X                                | 63.5%         | 0.072 Mbp                    |
| Ethanol 20%                            | Bacterial chromosome                         | Sporolactobacillus                 | 7.04%                               | < 1.E-04                          | 49 contigs                           | 25X                                 | 47.3%         | 3,4 Mbp                      |
| Microcosm 1                            | Bacterial chromosome                         | Ktedonobacter                      | 16.51%                              | < 1.E-04                          | 39 contigs                           | 60X                                 | 50.3%         | 3,3 Mbp                      |
| Ethanol 20%<br>Microcosm 2             | Bacterial chromosome                         | Sporolactobacillus                 | 15.49%                              | < 1.E-04                          | 42 contigs                           | 70X                                 | 47.3%         | 3,3 Mbp                      |
|                                        | Bacterial chromosome                         | Acidobacteria Gp1                  | 4.52%                               | 2.42E-04%                         | 19 scaffolds                         | 15X                                 | 58.1%         | 5 Mbp                        |
|                                        | Bacterial chromosome                         | Rhodanobacter                      | 14.03%                              | 1.92E-03%                         | 14 scaffolds                         | 60X                                 | 63.9%         | 5.4 Mbp                      |
| Mercury<br>0.02g / kg                  | Bacterial chromosomes                        | Rhodanobacter                      | 5.40%                               | 7.89E-04%                         | 24 scaffolds                         | 20X                                 | 64.9%         | 7.8 Mbp                      |
|                                        | Bacterial chromosome                         | Streptomyces                       | 9.30%                               | 1.75E-03%                         | 11 scaffolds                         | 25X                                 | 71.0%         | 9 Mbp                        |
| Microcosm 1                            | Undefined structure carrying one Mer operor  | Streptomyces                       | 0.57%                               | < 1.E-04                          | 1 scaffold                           | 50X                                 | 70.5%         | 0.309 Mbp                    |
|                                        | Probable phage infection                     | Streptomyces                       | 1.33%                               | < 1.E-04                          | 1 scaffold                           | 670X                                | 65.1%         | 0.056 Mbp                    |
| -                                      | Bacterial chromosome                         | Acidobacteria Gp1                  | 7.84%                               | 2.58E-04%                         | 1 scaffold                           | 25X                                 | 58.0%         | 4.8 Mbp                      |
|                                        | Bacterial chromosome                         | Dyella                             | 12.08%                              | 2.75E-03%                         | 6 scaffolds                          | 60X                                 | 64.8%         | 4.6 Mbp                      |
| Mercury                                | Bacterial chromosome                         | Streptomyces                       | 8.73%                               | 2.43E-03%                         | 46 scaffolds                         | 25X                                 | 70.9%         | 9 Mbp                        |
| 0.02g / kg                             | Bacterial chromosome                         | Streptomyces                       | 4.39%                               | 1.87E-02%                         | 169 scaffolds                        | 15X                                 | 70.0%         | 7.8 Mbp                      |
| Microcosm 2                            | Undefined structure carrying one Mer operor  | Streptomyces                       | 0.96%                               | < 1.E-04                          | 1 scaffold                           | 80X                                 | 70.5%         | 0.309 Mbp                    |
|                                        | Probable phage infection                     | Streptomyces                       | 7.68%                               | < 1.E-04                          | 1 scaffold                           | 1500X                               | 64.4%         | 0.156 Mbp                    |
|                                        | Probable phage infection                     | Streptomyces                       | 0.73%                               | < 1.E-04                          | 1 scaffold                           | 180X                                | 65.1%         | 0.142 Mbp                    |
|                                        | Bacterial chromosome (replicon 1)            |                                    | 26.32%                              | 1.99E-03%                         | 6 scaffolds                          | 75X                                 | 61.1%         | 4,2 Mbp                      |
| 0.2g / kg<br>Microcosm 3               | Bacterial chromosome (replicon 2)            | Burkholderia                       | 25.06%                              | 5.63E-04%                         | 4 scaffolds                          | 75X                                 | 61.7%         | 4,0 Mbp                      |
|                                        | Mega-plasmid incF carrying two Mer operons   |                                    | 6.90%                               | 2.34E-04%                         | 2 scaffolds                          | 75X                                 | 59.9%         | 1,1 Mbp                      |
|                                        | Bacterial chromosome (replicon 1)            |                                    | 9.59%                               | 1.28E-02%                         | 7 scaffolds                          | 25X                                 | 62.0%         | 4,3 Mbp                      |
|                                        | Bacterial chromosome (replicon 2)            | Burkholderia                       | 7.13%                               | 8.34E-03%                         | 6 scaffolds                          | 25X                                 | 61.2%         | 3,2 Mbp                      |
|                                        | Mega-plasmid incF carrying one Mer operon    |                                    | 2.45%                               | 2.01E-03%                         | 3 scaffolds                          | 25X                                 | 60.3%         | 1,1 Mbp                      |


### Burkholderia species (mercury enrichment)

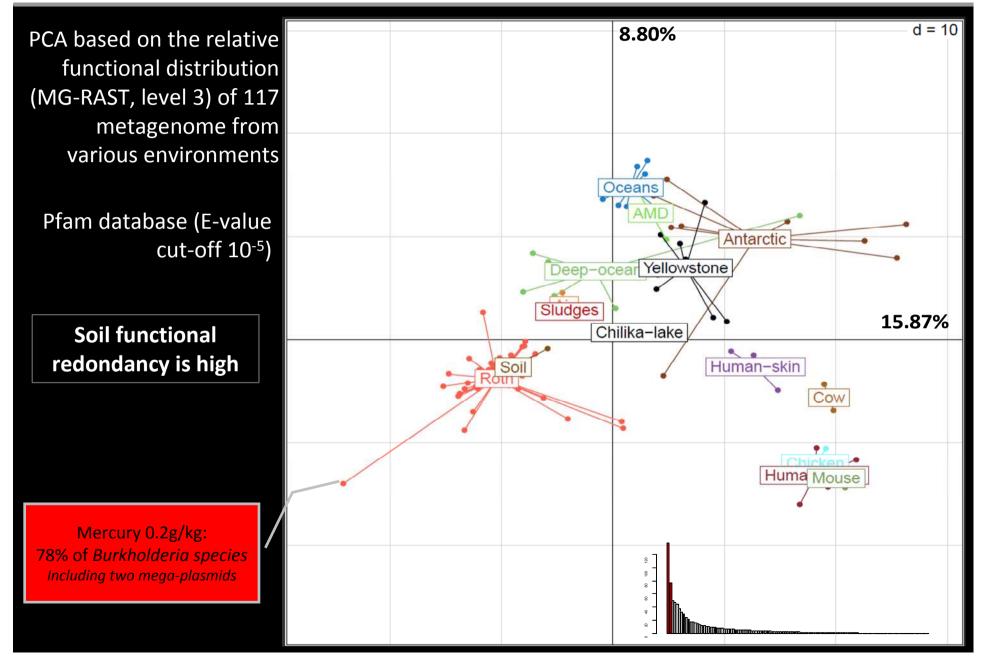





### Burkholderia species (mercury enrichment)

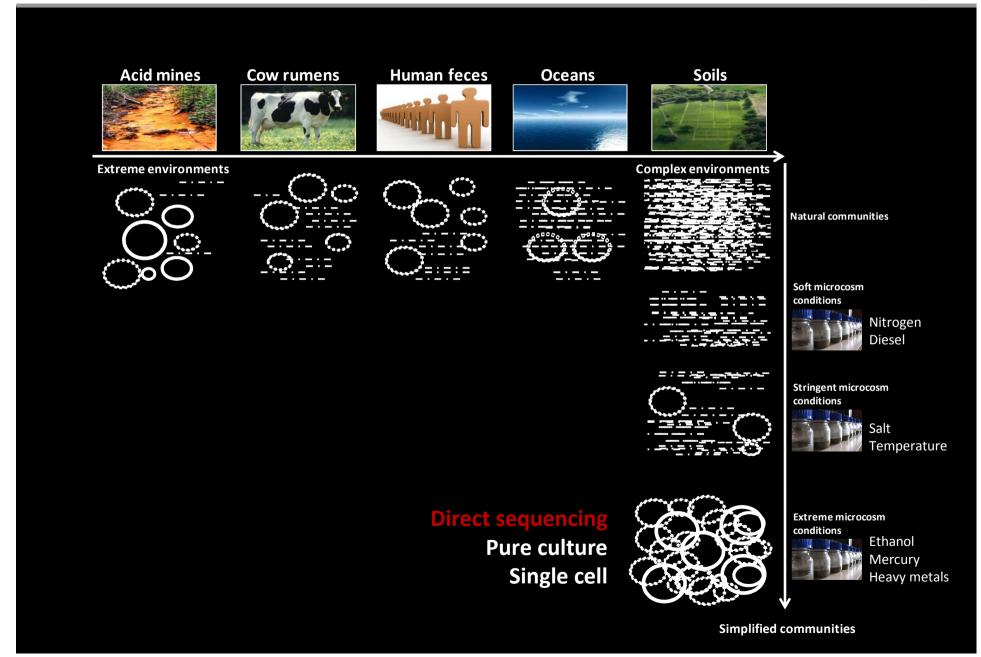




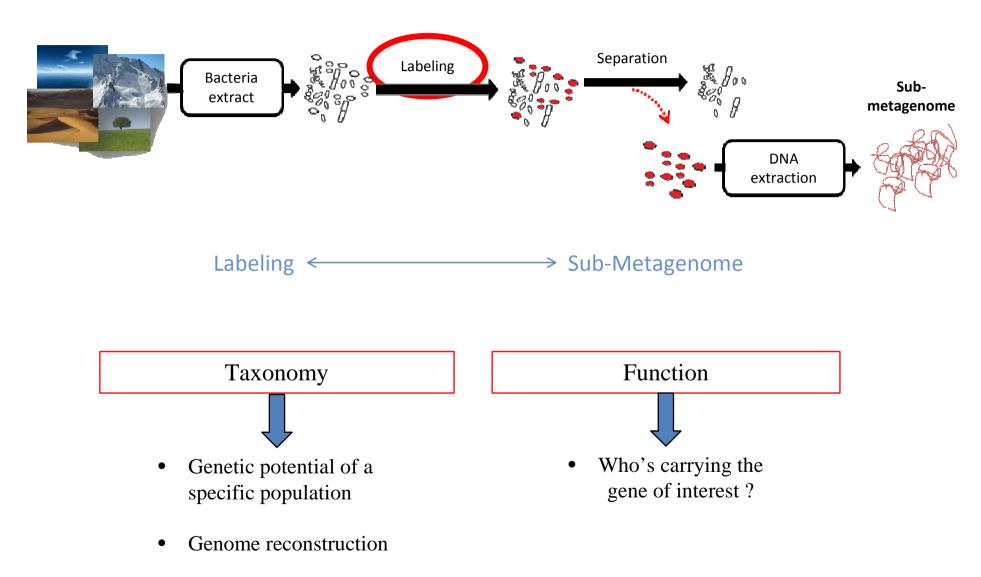

### Burkholderia species (mercury enrichment)



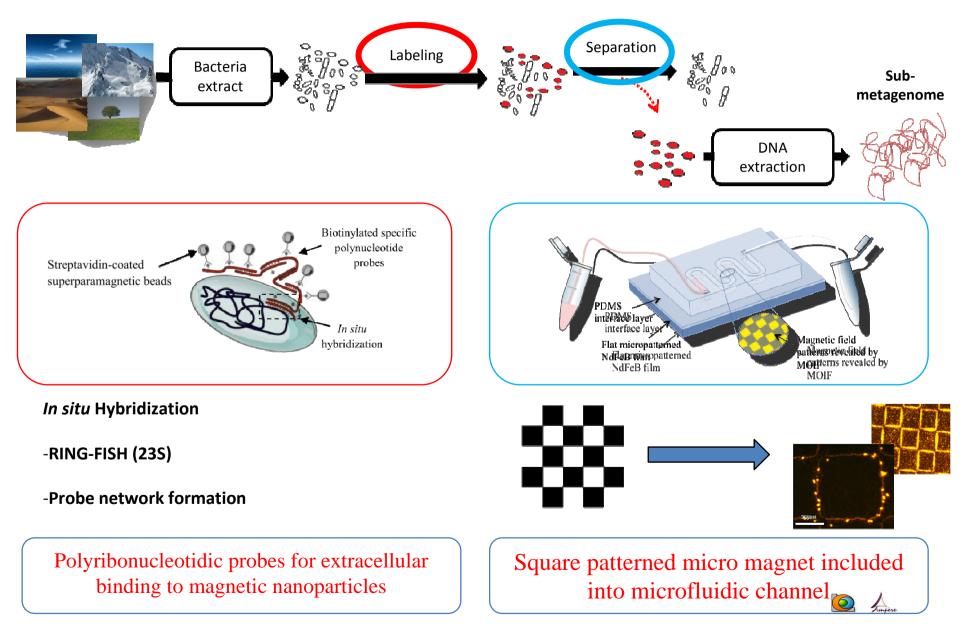



## **Global metagenomic comparisons**

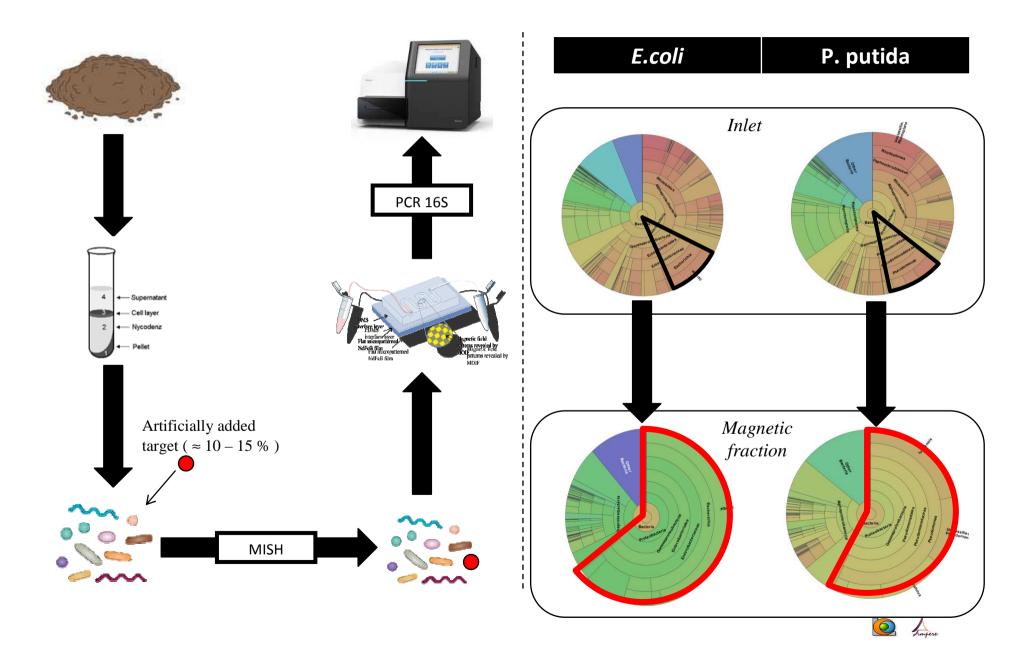





#### Strategy to assemble a soil metagenome







## "Single population"



### Stratégie de marquages et séparations (2)



#### **Application to soil samples**





OPINION published: xx January 2016 doi: 10.3389/fmicb.2016.00073



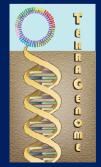
### Back to the Future of Soil Metagenomics

Joseph Nesme<sup>1</sup>, Wafa Achouak<sup>2</sup>, Spiros N. Agathos<sup>3</sup>, Mark Bailey<sup>4</sup>, Petr Baldrian<sup>5</sup>, Dominique Brunel<sup>6</sup>, Asa Frostegård<sup>7</sup>, Thierry Heulin<sup>2</sup>, Janet K. Jansson<sup>8</sup>, Edouard Jurkevitch<sup>9</sup>, Kristijna L. Kruus<sup>10</sup>, George A. Kowalchuk<sup>11</sup>, Antonio Lagares<sup>12</sup>, Hilary M. Lappin-Scott<sup>4</sup>, Philippe Lemanceau<sup>10</sup>, Denis Le Paslier<sup>15</sup>, Ines Mandic-Mulec<sup>16</sup>, J. Colin Murrell<sup>17</sup>, David D. Myrold<sup>18</sup>, Benaud Nalin<sup>19</sup>, Paolo Nannipieri<sup>20</sup>, Josh D. Neufeld<sup>21</sup>, Fergal O'Gara<sup>22,23</sup>, John J. Parnell<sup>24</sup>, Alfred Pühler<sup>25</sup>, Victor Pylro<sup>26</sup>, Juan L. Ramos<sup>27</sup>, Luiz F. W. Roesch<sup>28</sup>, Michael Schloter<sup>29</sup>, Christa Schleper<sup>30</sup>, Alexander Sczyrba<sup>25</sup>, Angela Sessitsch<sup>31</sup>, Sara Sjöling<sup>32</sup>, Jan Sørensen<sup>33</sup>, Søren J. Sørensen<sup>34</sup>, Christoph C. Tebbe<sup>35</sup>, Edward Topp<sup>36</sup>, George Tsiamis<sup>37</sup>, Jan Dirk van Elsas<sup>38</sup>, Geertje van Keulen<sup>39</sup>, Franco Widmer<sup>40</sup>, Michael Wagner<sup>41</sup>, Tong Zhang<sup>42</sup>, Xiaojun Zhang<sup>43</sup>, Liping Zhao<sup>43</sup>, Yong-Guan Zhu<sup>44</sup>, Timothy M. Vogel<sup>1</sup> and Pascal Simonet<sup>39\*</sup>

#### **OPEN ACCESS**

Edited by: Paul Bodelier, Netherlands Institute of Ecology, Netherlands

<sup>1</sup> Laboratoire Ampère (Centre National de la Recherche Scientifique UMR5005), Environmental Microbial Genomics, Ecole Centrale de Lyon, Université de Lyon, Ecully, France, <sup>2</sup> Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, CEA, Centre National de la Recherche Scientifique, Aix Marseille Université, UMR7265 BVME, Saint-Paul-lez-Durance, France,


Reviewed by:



#### Environmental Microbial Genomics Group



#### www.genomenviron.org



